Brief information about the project

Name of the project	AP14872287 «Study of cascade solar thermal energy
	storage efficiency using phase change materials in
Relevance	According to the International Energy Agency (IEA)
	thermal energy accounted for 50% of global final energy
	consumption in 2021, making it the largest final energy
	consumer and responsible for 40% of global carbon
	dioxide (CO2) emissions. As industries move towards
	decarbonization, the share of heat pumps and other sources
	of thermal renewable energy, such as solar water heaters,
	is increasing. Solar thermal energy is one of the three
	climate protection drivers, alongside photovoltaics and
	wind turbines. However, due to the intermittent nature of
	solar energy, daily and seasonal thermal energy storage
	will enable a continuous heat supply. The use of phase
	change materials (PCMs) for thermal energy storage can
	serve as a useful tool for storing and utilizing thermal
	mechanism for storing solar thermal energy using various
	PCMs for continental climatic conditions
Purpose	The project aims to develop a thermal accumulator based
i uipose	on PCM for cascading storage of solar thermal energy in
	continental climatic conditions. The project is aimed at
	researching an efficient geometric configuration of finned
	structures of cylindrical PCM containers, finding suitable
	PCMs for use in continental climatic conditions, and
	creating an algorithm for calculating complex heat and
	mass transfer processes with phase transformations.
Objectives	-Development of a numerical algorithm for studying
	complex heat and mass transfer processes considering
	phase transitions.
	-Numerical analysis of the solar thermal energy potential
	in various regions of Kazakhstan for the utilization of the
	Investigation of an afficient geometric configuration of
	internal finned structures of cylindrical containers for
	PCM
	-Selection of phase change materials for cascading heat
	storage, considering the characteristics of continental
	climate.
Expected and achieved results	According to the schedule, several configurations of the
	thermal accumulator with a cascaded arrangement of
	PCMs were assembled. These configurations allow for the
	investigation of thermal efficiency and energy storage
	performance by utilizing the latent heat of phase change
	materials (PCMs). Assembly of three thermal accumulator
	been completed. In all three configurations, PCM materials

	are poured into cylindrical containers, which are vertically positioned inside the outer cylindrical tube.
	A 3D numerical tool for calculating the efficiency of the thermal accumulator with a cascaded arrangement of PCMs has been developed based on COMSOL Multiphysics 5.6 software. Various computational fluid dynamics (CFD) simulations and parametric studies of the charging and discharging efficiency of the thermal accumulator have been conducted. Calculations of different geometric configurations for the internal finned structures of PCM containers have been performed.
Research team members with	1. Project Manager – Yerzhan Belyayev, Acting
their identifiers (Scopus Author ID, Researcher ID, ORCID, if available) and links to relevant profiles	 Professor of the Department of Mechanics Farabi University, Ph.D., Associate Professor. h index– 9, Researcher ID AAA-7041-2020; N-4425-2014, <u>ORCID:</u> 0000-0002-7947-2179, Scopus author ID: 57195693973. 2. Amankeldy Toleukhanov, LSS. h index – 2, ResearcherID: AAA-8468-2020, ORCID: 0000-0002- 7386-3494, Scopus author ID: 56085593800. 3. Abzal Seitov, LSS. h index – 2, Researcher ID AAS- 5730-2020, ORCID:0000-0002-7317-3047, Scopus author ID: 55343824600 4. Yelnar Yerdesh, h index– 2, Researcher ID: IZE-0908- 2023, AAS-5097-2020; ORCID: 0000-0001-9623- 5610; Scopus author ID: 57209467493. 5. Alina Abdidin, ORCID: 0009-0003-2488-9414. 6. Yelizaveta Karlina.
	As part of the project, Abzal Seytov's Ph.D. thesis is being prepared; he is the responsible executor and conducts experiments and complex 3D calculations. Master's
	students Aiym Kereykulova (M2) and Alina Abdidin (M1)
	are also being trained together with Professor Olivier Botella from the R&D center LEMTA of the University of
	Lorraine in France.
List of publications with links to them	 (1) Yerzhan Belyayev, Amankeldy Toleukhanov, Yelnar Yerdesh, Abzal Seitov, Abdurashid Aliuly, Olivier Botella. Numerical Simulation of Cascade Latent Heat Thermal Energy Storage Device Thermal Performance using Multiple PCMs // Proceedings of Thermophysics 2023 Conference, October 3rd – 5th, 2023, Dalesice, Czech Republic. (2) Amankeldy Toleukhanov, Yerzhan Belyayev, Yelnar Yerdesh, Abzal Seitov, Tannur Amanzholov, Huasheng Wang. Energy and Exergy Performance Study of Ground Source Heat Pump in Continental Climate Conditions // October 3rd – 5th, 2023, Dalesice, Czech Republic. (2) A. Abdidin Ya Palvavay Numerical modeling of
	heat and mass transfer processes taking into

	account the phenomenon of latent heat-storage in a thermal energy storage tank // Proceeding of
	thermal energy storage tank. // Troceeding of
	International Scientific and Practical Conference
	"Satbayev Conference – 2023", 12 April 2023
	Vol.3-P.9-15.
	(4) A. Abdidin, Ye. Belyayev, Numerical modeling of
	heat exchange and liquid flow in the thermal
	energy storage tank by latent heat method //
	Materials of International Scientific Conference of
	Students and Young Scientists «Farabi Alemi»
	Almaty, Kazakhstan, April 6-7, 2023 Vol.1-P.51.
	(5) A. Abdidin, A. Seitov, Ye. Belyayev, Melting
	enhancement of PCM in a tube latent heat thermal
	energy storage. // ABSTRACTS of the VII World
	Congress of Turkic World Mathematicians
	(TWMS Congress-2023), September 20–23, 2023,
	Turkestan, Kazakhstan. Vol.1-P.466.
Patents	-

Figure 1 – Solar water heater with cascade thermal storage

Figure 2 – Different geometric configurations of cascade thermal storage with different PCMs

Figure 3 – 3D contour plot of temperature distribution in cascade accumulator: a) charging, b) discharging.

Figure 4 – Application of Cascade Thermal Accumulator in Concentrated Solar Power Plants